If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+200X-3600=0
a = 1; b = 200; c = -3600;
Δ = b2-4ac
Δ = 2002-4·1·(-3600)
Δ = 54400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54400}=\sqrt{1600*34}=\sqrt{1600}*\sqrt{34}=40\sqrt{34}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-40\sqrt{34}}{2*1}=\frac{-200-40\sqrt{34}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+40\sqrt{34}}{2*1}=\frac{-200+40\sqrt{34}}{2} $
| 6+4x+7x=(6x-12) | | 4+5z=19 | | 25-28v-5=104 | | 7=t÷12 | | t/3-11=-8 | | 12x=-20+8x | | 28=0.7x | | 45x+44=175 | | 5x-13+7x-29+11x-61=180 | | -13.3n-5.7=340.1 | | -2(-3x+)=10(x-2) | | 22=−11(c+1) | | 2/5d-1=3/5d-3 | | 4t+16=72 | | -607.8=18.2x+1.9 | | 12w-6w=6 | | s-8/3=4 | | -90=6n-11n | | 53=3y+11 | | 8=3/2h | | X+3/10=x/5 | | 54=0.9x | | 2(n+4)=8-3(2-8) | | 12/6=4/n | | 2x-12=6-(3x-2) | | 1=x-5/3 | | 80=10n-20 | | -4+5y=12 | | 2(x-4)=1/2(6x-12) | | 16=2u-8 | | 2(3)(4x)-2(3)(5x)=3 | | ?(n+2)=7n+14 |